We then evaluated the dataset in a semi-quantitative way, combining simple presence-absence data with taxon dominance and site representativeness. This method was inspired by the work of Robinson (2003: 148).

(1) Cereals and "non-cereals" (pulses, oilseed, and cultivated fruit) are scored in the same way but were mainly due to different preservation probabilities, evaluated as two independent groups. Scoring of seed/fruit finds was carried out according to the following scheme:

In sites with a total seed/fruit count of less than 1,000:
1: taxon is present (less than 10 grains)
2: taxon is frequent (more than 10 grains)

In sites with a total seed/fruit count of 1,000 and above:
1: taxon is present (less than 100 grains)
2: taxon is frequent (more than 100 grains)
4: taxon is a major component, representing 25-49% of all grains per group
5: dominant, representing 50% or more of all grains per group

(2) In sites with extensive sampling, the scores are multiplied by the following factors:

x 2: sample number per site exceeds 20 samples or 1,000 litres
x 4: sample number exceeds 40 samples or 5,000 litres
x 5: sample number exceeds 100 samples

(3) The resulting scores are summed up per taxon per period per region, resulting in a Representativeness Index (RI). This value is used as a measure of representativeness of the data available per region per period. Taxa representation is expressed as a percentage value of the RI, but referring to the two independent groups of cereals vs. "non-cereals", due to the issues in different preservation probabilities mentioned above.

The Method: (2) The Representativeness Index (RI)

(1) Cereals and “non-cereals” (pulses, oilseeds, and cultivated fruit) are scored in the same way but were mainly due to different preservation probabilities, evaluated as two independent groups. Scoring of seed/fruit finds was carried out according to the following scheme:

In sites with a total seed/fruit count of less than 1,000:
1: taxon is present (less than 10 grains)
2: taxon is frequent (more than 10 grains)

In sites with a total seed/fruit count of 1,000 and above:
1: taxon is present (less than 100 grains)
2: taxon is frequent (more than 100 grains)
4: taxon is a major component, representing 25-49% of all grains per group
5: dominant, representing 50% or more of all grains per group

(2) In sites with extensive sampling, the scores are multiplied by the following factors:

x 2: sample number per site exceeds 20 samples or 1,000 litres
x 4: sample number exceeds 40 samples or 5,000 litres
x 5: sample number exceeds 100 samples

(3) The resulting scores are summed up per taxon per period per region, resulting in a Representativeness Index (RI). This value is used as a measure of representativeness of the data available per region per period. Taxa representation is expressed as a percentage value of the RI, but referring to the two independent groups of cereals vs. “non-cereals”, due to the issues in different preservation probabilities mentioned above.

The Method: (2) The Representativeness Index (RI)

We then evaluated the dataset in a semi-quantitative way, combining simple presence-absence data with taxon dominance and site representativeness. This method was inspired by the work of Robinson (2003: 148).

(1) Cereals and “non-cereals” (pulses, oilseeds, and cultivated fruit) are scored in the same way but were mainly due to different preservation probabilities, evaluated as two independent groups. Scoring of seed/fruit finds was carried out according to the following scheme:

In sites with a total seed/fruit count of less than 1,000:
1: taxon is present (less than 10 grains)
2: taxon is frequent (more than 10 grains)

In sites with a total seed/fruit count of 1,000 and above:
1: taxon is present (less than 100 grains)
2: taxon is frequent (more than 100 grains)
4: taxon is a major component, representing 25-49% of all grains per group
5: dominant, representing 50% or more of all grains per group

(2) In sites with extensive sampling, the scores are multiplied by the following factors:

x 2: sample number per site exceeds 20 samples or 1,000 litres
x 4: sample number exceeds 40 samples or 5,000 litres
x 5: sample number exceeds 100 samples

(3) The resulting scores are summed up per taxon per period per region, resulting in a Representativeness Index (RI). This value is used as a measure of representativeness of the data available per region per period. Taxa representation is expressed as a percentage value of the RI, but referring to the two independent groups of cereals vs. “non-cereals”, due to the issues in different preservation probabilities mentioned above.

The Method: (2) The Representativeness Index (RI)

We then evaluated the dataset in a semi-quantitative way, combining simple presence-absence data with taxon dominance and site representativeness. This method was inspired by the work of Robinson (2003: 148).

(1) Cereals and “non-cereals” (pulses, oilseeds, and cultivated fruit) are scored in the same way but were mainly due to different preservation probabilities, evaluated as two independent groups. Scoring of seed/fruit finds was carried out according to the following scheme:

In sites with a total seed/fruit count of less than 1,000:
1: taxon is present (less than 10 grains)
2: taxon is frequent (more than 10 grains)

In sites with a total seed/fruit count of 1,000 and above:
1: taxon is present (less than 100 grains)
2: taxon is frequent (more than 100 grains)
4: taxon is a major component, representing 25-49% of all grains per group
5: dominant, representing 50% or more of all grains per group

(2) In sites with extensive sampling, the scores are multiplied by the following factors:

x 2: sample number per site exceeds 20 samples or 1,000 litres
x 4: sample number exceeds 40 samples or 5,000 litres
x 5: sample number exceeds 100 samples

(3) The resulting scores are summed up per taxon per period per region, resulting in a Representativeness Index (RI). This value is used as a measure of representativeness of the data available per region per period. Taxa representation is expressed as a percentage value of the RI, but referring to the two independent groups of cereals vs. “non-cereals”, due to the issues in different preservation probabilities mentioned above.

The Method: (2) The Representativeness Index (RI)

We then evaluated the dataset in a semi-quantitative way, combining simple presence-absence data with taxon dominance and site representativeness. This method was inspired by the work of Robinson (2003: 148).

(1) Cereals and “non-cereals” (pulses, oilseeds, and cultivated fruit) are scored in the same way but were mainly due to different preservation probabilities, evaluated as two independent groups. Scoring of seed/fruit finds was carried out according to the following scheme:

In sites with a total seed/fruit count of less than 1,000:
1: taxon is present (less than 10 grains)
2: taxon is frequent (more than 10 grains)

In sites with a total seed/fruit count of 1,000 and above:
1: taxon is present (less than 100 grains)
2: taxon is frequent (more than 100 grains)
4: taxon is a major component, representing 25-49% of all grains per group
5: dominant, representing 50% or more of all grains per group

(2) In sites with extensive sampling, the scores are multiplied by the following factors:

x 2: sample number per site exceeds 20 samples or 1,000 litres
x 4: sample number exceeds 40 samples or 5,000 litres
x 5: sample number exceeds 100 samples

(3) The resulting scores are summed up per taxon per period per region, resulting in a Representativeness Index (RI). This value is used as a measure of representativeness of the data available per region per period. Taxa representation is expressed as a percentage value of the RI, but referring to the two independent groups of cereals vs. “non-cereals”, due to the issues in different preservation probabilities mentioned above.

The Method: (2) The Representativeness Index (RI)