INTRODUCTION

Körtik Tepe is located in southeastern Turkey, in the northern part of the Fertile Crescent (Fig. 1). Archaeobotanical samples from occupation contexts dating to the final Younger Dryas, a transition phase and the Early Holocene were analyzed to gain insight into plant use and vegetation changes during the Epipalaeolithic-Neolithic transition. The main research questions are:

1) Are there indications for cultivation and domestication at this site?
2) What was the plant subsistence strategy during the different occupation phases?
3) How did the vegetation change and what impact did it have on subsistence?

In total 537 archaeobotanical samples were retrieved with an accumulated volume of more than 3000 litres. Until now, 140 different taxa were identified from ca.15,000 plant remains. The preservation of the remains is moderate. The sampling strategy varied between systematic and judgement sampling. With the documentation of many profiles and Bayesian modeling applied to the more than 20 ¹⁴C dates, Körtik Tepe provides an excellent stratigraphy of occupation from the final Younger Dryas to the Early Holocene (10200-9200 cal BC).

In order to compare the Körtik Tepe archaeobotanical results with those from other sites a formal framework of analysis was established that allows to evaluate the quality of the sampling strategy at each site and therefore allows to avoid interpretations based on incomparable datasets.

RESULTS KÖRTIK TEPPE

A condensed taxa list of the seed finds is presented in Table 1. Fig. 2 shows the fragment percentages of wood charcoal finds. Most of the identified seeds show a decrease in find ubiquity from the Younger Dryas to the Early Holocene, especially potentially cultivated crops like plump grasses, poppy or a type of buckwheat (Table 1).

Preliminary results indicate that the spectrum of woody plants changed from the Younger Dryas to the Early Holocene. No deciduous Quercus sp. was found so far in the Younger Dryas layers, whereas it was regularly present in the Early Holocene (Fig. 2). The probable absence of oak woodland in the Younger Dryas suggests aridification. Riverine woodland however, was present during the Younger Dryas and the Early Holocene and possibly reflects the site’s location near the confluence of the Batman and Tigris River.

Table 1 Ubiquity of the most numerous and frequent taxa at Körtik Tepe.

<table>
<thead>
<tr>
<th>Family</th>
<th>Younger Dryas</th>
<th>Transition</th>
<th>Early Holocene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poaceae</td>
<td>24%</td>
<td>36%</td>
<td>55%</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>36%</td>
<td>55%</td>
<td>55%</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>14%</td>
<td>23%</td>
<td>23%</td>
</tr>
<tr>
<td>Polygonaceae</td>
<td>14%</td>
<td>23%</td>
<td>23%</td>
</tr>
</tbody>
</table>

Table 2 Parameters and indices for a better comparison of archaeobotanical results from different sites in the Fertile Crescent. The pink colour shows the setting of Körtik Tepe, the red sum that of Abu Hureya within this model (there is no information about sieve mesh size and preservation at Abu Hureya, but tiny seed fragments indicate a small mesh size and average good preservation).

CONTACT

Corinna RÖSSNER1, Katleen DECKERS2, Simone RIEHL3, Aytaç COŞKUN4, Marion BENZ5, Vecihi ÖZKAYA4, Nicholas J. CONARD3

REFERENCES